ДИНАМИКА
Диафильм в 2 частях
Издано Фабрикой экраннных учебно-наглядных пособий
Всесоюзного треста по производству учебно-наглядных пособий
Государственного комитета Совета Министров СССР по профтехобразованию
ЛЕНИНГРАД - 1967
ЧАСТЬ I

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

1. Законы Ньютона.
2. Работа и мощность.
3. Силы инерции.
4. Энергия как мера физических видов движения материи.
1. Законы Ньютона

I ЗАКОН (ЗАКОН ИНЕРЦИИ)

Движение тела при отсутствии внешних сил

Межпланетный корабль с выключенными двигателями, находясь на большом расстоянии от небесных тел, движется равномерно и прямолинейно.
Движение тела при действии уравновешенной системы сил

Движение буксира будет равномерным и прямолинейным, если сила сопротивления станет равной силе тяги винтов.
Движение тела при действии неуравновешенной системы сил

Траектория мины искривляется под действием силы тяжести.
II ЗАКОН (СВЯЗЬ УСКОРЕНИЯ С ДЕЙСТВУЮЩЕЙ НА ТЕЛО СИЛОЙ)

\[\ddot{a} = \frac{\vec{F}}{m} \]

Масса ядра велика. Человек может сообщить ядру небольшое ускорение. В момент отрыва ядра от руки скорость его мала.

Масса мяча сравнительно мала. Человек сообщает мячу большое ускорение. Начальная скорость полета мяча велика.
Численная величина ускорения силы тяжести

\[g = 9,832 \text{ м/сек}^2 \]

\[g = 9,816 \text{ м/сек}^2 \]

\[g = 9,780 \text{ м/сек}^2 \]

\[g = 9,785 \text{ м/сек}^2 \]

Величина \(g \) зависит от географической широты места и высоты над уровнем моря \((g = g_0 - 0,000003 \times h \text{ м})\). При расчетах \(g = 9,8 \text{ м/сек}^2 \)
Первая задача динамики точки.
(нахождение силы по заданному ускорению)

Поступательное движение шахтной клети

Постоянное ускорение шахтной клети — a.
Путь S, прошедший клетью в первые 10 сек., — 35 м.
Вес клети $G = 294$ кГ.

Определить натяжение каната T, поддерживающего клеть.

По II закону Ньютона $ma = G - T$; $m = \frac{G}{g}$.
Из уравнения равноускоренного движения

$$a = \frac{2S}{t^2}; \quad T = G - ma.$$
Вторая задача динамики точки
(нахождение закона движения по заданным силам)

Закон движения падающего балласта

Определить закон движения падающего балласта.
Сопротивлением воздуха пренебречь.

По II закону Ньютона

\[ma = G. \]

Так как \(G = mg \), то \(a = g \),
то есть ускорение постоянно
и движение равноускоренно.

Закон равноускоренного движения:

\[S = S_0 + V_0 t + \frac{at^2}{2}. \]

Так как \(S_0 = 0 \) и \(V_0 = 0 \), то

\[S = \frac{gt^2}{2}. \]
III ЗАКОН (ЗАКОН РАВЕНСТВА ДЕЙСТВИЯ И ПРОТИВОДЕЙСТВИЯ)

Силы действия и противодействия приложены к разным телам.
Одинаковые показания динамометров

Канат, удерживаемый людьми

Канат, прикрепленный к стене
Подъем груза автокраном

При подъеме груз силой своего веса стремится опрокинуть кран.
IV ЗАКОН (ЗАКОН НЕЗАВИСИМОСТИ ДЕЙСТВИЯ СИЛ)

Подъем мачты линии электропередачи

Ускорение a

$\vec{F} = \vec{F}_1 + \vec{F}_2; \quad \bar{a} = \bar{a}_1 + \bar{a}_2$.
Транспорт на мосту

Прогиб $y = y_1 + y_2$

P_1, P_2
Работа и мощность

Работа силы

$A = FS \cos \alpha$ кГм (Нм)
Работа при фрезеровании канавки

Работа, необходимая для фрезерования канавки, определяется произведением силы сопротивления металла на длину канавки.
Работа локомотива

Скорость поезда постоянна при движении по прямому участку пути. Тяга локомотива F равна силам сопротивления движению состава F_t.

Определить работу локомотива A на пути в 1 км.
Работа силы тяжести

Сила тяжести всегда направлена отвесно вниз.

Работа силы тяжести не зависит от формы траектории движения центра тяжести и равна произведению силы на высоту опускания или подъема центра тяжести тела.
Работа пары сил

Пара сил, приложенная к тelu, вызывает его вращение.

\[M = P l \]

\[A = M \varphi \text{ кГм (нм)} \]
Одннаковая работа при разной продолжительности

Подъем на гору

Шагом

Бегом

Сравнивая работоспособность, необходимо учитывать время работы.

Время подъема $t = 5$ сек

Время подъема $t = 1$ сек
Мощность

При поступательном движении

При вращательном движении

\[W = \frac{A}{t} = v \cdot F \text{ кГм/сек (нм/сек = вт)} \]

\[W = \frac{A}{t} = \omega M \]

\[W = \frac{\pi \eta}{30} \cdot M \]

75 кГм/сек = 1 л.с. = 736 вт
Коэффициент полезного действия

\[\eta = \frac{A_{\text{полезн}}}{A_{\text{затрачен}}} = \frac{W_{\text{полезн}}}{W_{\text{затрачен}}} \]

\[\eta \] всегда меньше 1.

Часть мощности затрачивается на преодоление сил трения, переходя при этом в тепловую, звуковую и другие виды энергии.
Вечный двигатель

С 1269 г. начались попытки создать двигатель, не получающий энергии извне.

Для осуществления вечного двигателя необходимо, чтобы \(\eta \) был больше 1, что невозможно. В 1775 г. Парижская академия наук прекратила рассмотрение проектов вечного двигателя.
Сила инерции — это сила сопротивления движению данной точки. Она приложена к тelu, вызывающему изменение скорости движения точки. Сила инерции проявляется при движении точки с ускорением.
Старт ракеты

Ни одно тело не может начать движение с большой скоростью — необходим разгон.
Торможение транспорта

Ни одно движущееся тело не может мгновенно остановиться.
Силы инерции в криволинейном движении

Касательная сила инерции

$$F_{\tau}^{ин} = m \frac{V - V_0}{t}$$

Нормальная сила инерции (центробежная сила)

$$F_n^{ин} = m \frac{V^2}{R}$$

Центробежная сила всегда направлена в сторону выпуклости траектории.
Математический маятник

Если силы инерции приложить к массе A, то они уравновесят действие активной силы P и реакции связи T.
Раскаленные частицы металла ("искры"), потеряв связь с точильным камнем и став свободными телами, движутся инерциально по касательной к окружности камня.
Гигантские шаги

Тело прыгуна стремится сохранить прямолинейное движение по касательной к траектории.
Центробежный регулятор

При увеличении угловой скорости ω грузы регулятора расходятся, поднимая муфту A.
Ротор гидротурбины

Центробежные силы, отрывающие лопасти гидротурбины при рабочих оборотах, достигают 100 m. Приходится значительно утолщать лопасти в месте крепления к ступице.
Современные центробежные регуляторы

Шток регулятора Груз Вал турбины

Паровой турбины

Опережения зажигания автомобильного двигателя
Сила инерции—разрушитель

Если на вал быстроходного электромотора надеть тяжёлый карборундовый круг, то под влиянием центробежных сил инерции круг разорвётся.
Вираж

При поворотах велосипедисты и мотоциклисты наклоняют корпус в сторону поворота, иначе центробежная сила опрокинет машину.
Силы инерции вала

Если центр тяжести вращающегося вала не лежит на оси вращения, возникает центробежная сила инерции, проявляющаяся в вибрации вала (вал "бьет").

При обточке валов большой длины устанавливаются люнеты, сохраняющие прямолинейность оси вала; центр тяжести его находится на оси вращения.
Балансировка планшайбы

При закреплении на планшайбе несимметричной детали необходимо укрепить на ней противовес так, чтобы общий центр тяжести детали и противовеса находился на оси вращения планшайбы.
Центробежные силы инерции создают переменное давление на площадку; ее колебания передаются бетону и уплотняют его.
Динамическая неуравновешенность

Центробежные силы инерции образуют пару, которая и вызывает дополнительное давление на опоры.

Плоскость шкива не перпендикулярна оси вращения (вал "бьет").
4. Энергия как мера физических видов движения материи

Кинетическая энергия

пуля при вылете из ствола: ~350 кГм

1 м воды, падающей с высоты 10 м:
~10000 кГм

автомобиля, движущегося со скоростью 40 км/ч:
~10000 кГм
Потенциальная энергия

пружины, сжатой на величину Δm
(жесткость пружины $C \, \text{кН}/\text{м}$):

$$E_{\text{пот}} = C \frac{\Delta^2}{2}.$$

бабы, поднятой на высоту h
от уровня воды:

$$E_{\text{пот}} = Gh.$$
Закон сохранения энергии
(1748 г.)

„Энергия не появляется и не исчезает, а переходит в строго определенных количествах из одного вида в другой“.
М. В. Ломоносов

Закон сохранения механической энергии

\[E_k + E_{pot} = \text{const} \]

Потенциальная энергия, накопленная пружиной, переходит в кинетическую энергию стрелок.

Кинетическая энергия движущегося вагона переходит в потенциальную энергию сжатия буферной пружины.
Затяжной прыжок парашютиста

Высота самолета H.
Высота раскрытия парашюта h.
Вес парашютиста (со снаряжением) G.

Определить механическую энергию парашютиста
1) в момент отделения от самолета,
2) в момент раскрытия парашюта.

Кинетическая энергия	Потенциальная энергия	Механическая энергия
1) 0 | GH | $E = GH$
2) $\frac{mv^2}{2}$ | Ch | $E = \frac{mv^2}{2} + Gh$
Цирковой аттракцион „мертвая петля“

Определить высоту горки, необходимую для безопасного преодоления кольца.

Центробежная сила инерции \(F_{нн} \) должна быть не менее веса велосипедиста \(G \): \(\frac{mv^2}{R} \geq G \), но \(\frac{mv^2}{2} = G (H-2R) \).

Следовательно, \(\frac{GR}{2} \leq G (H-2R) \). \(H \geq 2,5R \).
КОНЕЦ ЧАСТИ